extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×S3).1D10 = (C2×C20).D6 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).1D10 | 480,402 |
(C22×S3).2D10 = D6⋊C4.D5 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).2D10 | 480,417 |
(C22×S3).3D10 = C60⋊5C4⋊C2 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).3D10 | 480,418 |
(C22×S3).4D10 = Dic5.8D12 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).4D10 | 480,426 |
(C22×S3).5D10 = D30.35D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).5D10 | 480,431 |
(C22×S3).6D10 = D6⋊Dic5.C2 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).6D10 | 480,443 |
(C22×S3).7D10 = C60.89D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).7D10 | 480,446 |
(C22×S3).8D10 = C5⋊(C42⋊3S3) | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).8D10 | 480,448 |
(C22×S3).9D10 = C60.69D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).9D10 | 480,449 |
(C22×S3).10D10 = Dic15⋊D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).10D10 | 480,484 |
(C22×S3).11D10 = D10.17D12 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).11D10 | 480,490 |
(C22×S3).12D10 = D30⋊D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).12D10 | 480,496 |
(C22×S3).13D10 = D30.7D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).13D10 | 480,514 |
(C22×S3).14D10 = D6⋊C4⋊D5 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).14D10 | 480,523 |
(C22×S3).15D10 = D10⋊D12 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).15D10 | 480,524 |
(C22×S3).16D10 = C60⋊D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).16D10 | 480,525 |
(C22×S3).17D10 = C20⋊D12 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).17D10 | 480,527 |
(C22×S3).18D10 = Dic15⋊2D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).18D10 | 480,529 |
(C22×S3).19D10 = D30⋊12D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).19D10 | 480,537 |
(C22×S3).20D10 = Dic15.10D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).20D10 | 480,538 |
(C22×S3).21D10 = C60⋊10D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).21D10 | 480,539 |
(C22×S3).22D10 = Dic15.31D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).22D10 | 480,540 |
(C22×S3).23D10 = C20⋊2D12 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).23D10 | 480,542 |
(C22×S3).24D10 = C23.D5⋊S3 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).24D10 | 480,601 |
(C22×S3).25D10 = C30.(C2×D4) | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).25D10 | 480,615 |
(C22×S3).26D10 = (C2×C10).D12 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).26D10 | 480,619 |
(C22×S3).27D10 = (C6×D5)⋊D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).27D10 | 480,625 |
(C22×S3).28D10 = D30⋊7D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).28D10 | 480,633 |
(C22×S3).29D10 = (C2×C10)⋊4D12 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).29D10 | 480,642 |
(C22×S3).30D10 = Dic15⋊5D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).30D10 | 480,643 |
(C22×S3).31D10 = Dic15⋊18D4 | φ: D10/C5 → C22 ⊆ Out C22×S3 | 240 | | (C2^2xS3).31D10 | 480,647 |
(C22×S3).32D10 = D6.(C4×D5) | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).32D10 | 480,474 |
(C22×S3).33D10 = (S3×Dic5)⋊C4 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).33D10 | 480,476 |
(C22×S3).34D10 = Dic5⋊4D12 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).34D10 | 480,481 |
(C22×S3).35D10 = Dic15⋊14D4 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).35D10 | 480,482 |
(C22×S3).36D10 = D6⋊1Dic10 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).36D10 | 480,486 |
(C22×S3).37D10 = Dic5×D12 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).37D10 | 480,491 |
(C22×S3).38D10 = Dic5⋊D12 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).38D10 | 480,492 |
(C22×S3).39D10 = D6⋊2Dic10 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).39D10 | 480,493 |
(C22×S3).40D10 = (C2×D12).D5 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).40D10 | 480,499 |
(C22×S3).41D10 = D6.D20 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).41D10 | 480,503 |
(C22×S3).42D10 = D6⋊3Dic10 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).42D10 | 480,508 |
(C22×S3).43D10 = Dic15⋊8D4 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).43D10 | 480,511 |
(C22×S3).44D10 = D6⋊4Dic10 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).44D10 | 480,512 |
(C22×S3).45D10 = D6⋊(C4×D5) | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).45D10 | 480,516 |
(C22×S3).46D10 = Dic15⋊9D4 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).46D10 | 480,518 |
(C22×S3).47D10 = D6.9D20 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).47D10 | 480,533 |
(C22×S3).48D10 = D5×D6⋊C4 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 120 | | (C2^2xS3).48D10 | 480,547 |
(C22×S3).49D10 = D30.27D4 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 120 | | (C2^2xS3).49D10 | 480,549 |
(C22×S3).50D10 = D6⋊4D20 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 120 | | (C2^2xS3).50D10 | 480,550 |
(C22×S3).51D10 = D30⋊5D4 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 120 | | (C2^2xS3).51D10 | 480,552 |
(C22×S3).52D10 = Dic5×C3⋊D4 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).52D10 | 480,627 |
(C22×S3).53D10 = (S3×C10).D4 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).53D10 | 480,631 |
(C22×S3).54D10 = Dic15⋊4D4 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).54D10 | 480,634 |
(C22×S3).55D10 = Dic15⋊17D4 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).55D10 | 480,636 |
(C22×S3).56D10 = (S3×C10)⋊D4 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).56D10 | 480,641 |
(C22×S3).57D10 = D30⋊8D4 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 120 | | (C2^2xS3).57D10 | 480,653 |
(C22×S3).58D10 = C2×D12⋊D5 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).58D10 | 480,1079 |
(C22×S3).59D10 = C2×D12⋊5D5 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).59D10 | 480,1084 |
(C22×S3).60D10 = S3×D4⋊2D5 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 120 | 8- | (C2^2xS3).60D10 | 480,1099 |
(C22×S3).61D10 = C2×C30.C23 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).61D10 | 480,1114 |
(C22×S3).62D10 = C2×Dic3.D10 | φ: D10/D5 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).62D10 | 480,1116 |
(C22×S3).63D10 = (S3×C20)⋊5C4 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).63D10 | 480,414 |
(C22×S3).64D10 = D6⋊Dic5⋊C2 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).64D10 | 480,427 |
(C22×S3).65D10 = D6⋊Dic10 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).65D10 | 480,428 |
(C22×S3).66D10 = C60.45D4 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).66D10 | 480,441 |
(C22×S3).67D10 = C60.46D4 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).67D10 | 480,445 |
(C22×S3).68D10 = (S3×C20)⋊7C4 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).68D10 | 480,447 |
(C22×S3).69D10 = C4×C15⋊D4 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).69D10 | 480,515 |
(C22×S3).70D10 = C15⋊17(C4×D4) | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).70D10 | 480,517 |
(C22×S3).71D10 = C4×C5⋊D12 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).71D10 | 480,521 |
(C22×S3).72D10 = C15⋊22(C4×D4) | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).72D10 | 480,522 |
(C22×S3).73D10 = D10⋊C4⋊S3 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).73D10 | 480,528 |
(C22×S3).74D10 = D6⋊D20 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).74D10 | 480,530 |
(C22×S3).75D10 = C60⋊4D4 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).75D10 | 480,532 |
(C22×S3).76D10 = C60⋊6D4 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).76D10 | 480,536 |
(C22×S3).77D10 = C2×D6⋊Dic5 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).77D10 | 480,614 |
(C22×S3).78D10 = C15⋊C22≀C2 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 120 | | (C2^2xS3).78D10 | 480,644 |
(C22×S3).79D10 = (C2×C10)⋊11D12 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 120 | | (C2^2xS3).79D10 | 480,646 |
(C22×S3).80D10 = C2×D20⋊5S3 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).80D10 | 480,1074 |
(C22×S3).81D10 = C2×D60⋊C2 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).81D10 | 480,1081 |
(C22×S3).82D10 = C2×D6.D10 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 240 | | (C2^2xS3).82D10 | 480,1083 |
(C22×S3).83D10 = S3×C4○D20 | φ: D10/C10 → C2 ⊆ Out C22×S3 | 120 | 4 | (C2^2xS3).83D10 | 480,1091 |
(C22×S3).84D10 = C4×S3×Dic5 | φ: trivial image | 240 | | (C2^2xS3).84D10 | 480,473 |
(C22×S3).85D10 = S3×C10.D4 | φ: trivial image | 240 | | (C2^2xS3).85D10 | 480,475 |
(C22×S3).86D10 = S3×C4⋊Dic5 | φ: trivial image | 240 | | (C2^2xS3).86D10 | 480,502 |
(C22×S3).87D10 = S3×D10⋊C4 | φ: trivial image | 120 | | (C2^2xS3).87D10 | 480,548 |
(C22×S3).88D10 = S3×C23.D5 | φ: trivial image | 120 | | (C2^2xS3).88D10 | 480,630 |
(C22×S3).89D10 = C2×S3×Dic10 | φ: trivial image | 240 | | (C2^2xS3).89D10 | 480,1078 |
(C22×S3).90D10 = S3×C2×C4×D5 | φ: trivial image | 120 | | (C2^2xS3).90D10 | 480,1086 |
(C22×S3).91D10 = C2×S3×D20 | φ: trivial image | 120 | | (C2^2xS3).91D10 | 480,1088 |
(C22×S3).92D10 = C22×S3×Dic5 | φ: trivial image | 240 | | (C2^2xS3).92D10 | 480,1115 |